
Computational Statistics and Data Analysis 71 (2014) 116–127

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Robust mixture regression using the t-distribution
Weixin Yao ∗, Yan Wei, Chun Yu
Kansas State University, USA

a r t i c l e i n f o

Article history:
Received 26 June 2012
Received in revised form 11 July 2013
Accepted 12 July 2013
Available online 1 August 2013

Keywords:
EM algorithm
Mixture regression models
Outliers
Robust regression
t-distribution

a b s t r a c t

The traditional estimation of mixture regression models is based on the normal as-
sumption of component errors and thus is sensitive to outliers or heavy-tailed errors.
A robust mixture regression model based on the t-distribution by extending the mixture
of t-distributions to the regression setting is proposed. However, this proposed new mix-
ture regressionmodel is still not robust to high leverage outliers. In order to overcome this,
a modified version of the proposed method, which fits the mixture regression based on
the t-distribution to the data after adaptively trimming high leverage points, is also pro-
posed. Furthermore, it is proposed to adaptively choose the degrees of freedom for the
t-distribution using profile likelihood. The proposed robust mixture regression estimate
has high efficiency due to the adaptive choice of degrees of freedom.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mixture regression models are well known as switching regression models in the econometrics literature, which were
introduced by Goldfeld and Quandt (1973). These models have been widely used to investigate the relationship between
variables coming from several unknown latent homogeneous groups and applied inmany fields, such as business,marketing,
and social sciences (Jiang and Tanner, 1999; Böhning, 1999;Wedel andKamakura, 2000;McLachlan and Peel, 2000; Skrondal
and Rabe-Hesketh, 2004; Frühwirth-Schnatter, 2006).

Let Z be a latent class variable such that given Z = j, the response y depends on the p-dimensional predictor x in a linear
way

y = xTβj + ϵj, j = 1, 2, . . . ,m, (1.1)

where m is the number of homogeneous groups (also called components in mixture models) in the population and ϵj ∼

N(0, σ 2
j ) is independent of x. Suppose P(Z = j) = πj, j = 1, 2, . . . ,m, and Z is independent of x, then the conditional

density of Y given x, without observing Z , is

f (y|x, θ) =

m
j=1

πjφ(y; xTβj, σ
2
j ), (1.2)

where φ(·;µ, σ 2) is the density function of N(µ, σ 2) and θ = (π1,β1, σ1, . . . , πm,βm, σm)
T . The model (1.2) is the so

called mixture of regression models. Hennig (2000) proved identifiability of model (1.2) under some general conditions for
the covariates. In general, the model (1.2) is identifiable if the number of components, m, is smaller than the number of
distinct (p − 1)-dimensional hyperplanes that one needs to cover the covariates of each cluster. The above conditions are
usually satisfied if the domain of x contains an open set in Rp.
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The unknownparameter θ in (1.2), given observations {(x1, y1), . . . , (xn, yn)}, is traditionally estimated by themaximum
likelihood estimate (MLE):

θ̂ = argmax
θ

n
i=1

log


m
j=1

πjφ(yi; xTi βj, σ
2
j )


. (1.3)

Note that the maximizer of (1.3) does not have an explicit solution and is usually estimated by the EM algorithm (Dempster
et al., 1977).

It is well known that the log-likelihood function (1.3) is unbounded and goes to infinity if one or more observations
lie exactly on one component hyperplane and the corresponding component variance goes to zero. When running the EM
algorithm, some initial values might converge to the boundary point with small variance and very large log-likelihood. In
such situations, our objective is to find a local maximum of (1.3) in the interior of parameter space (Kiefer, 1978; Peters
andWalker, 1978). However, the challenge is to find this interior local maximum. Hathaway (1985, 1986) proposed putting
some constraints on the parameter space such that the component variance has some low limit. Yao (2010) proposed using
the profile likelihood and a graphical method to locate the interior local maximum. Practically, the interior local maximum
can usually be found by starting from some ‘‘good’’ initial values such as the K-means (MacQueen, 1967) and the moment
method estimator (Lindsay and Basak, 1993). Chen et al. (2008) also proposed using a penalized likelihood method to avoid
the unboundedness of mixture likelihood. In this article, for simplicity of computation and comparison, we assume equal
variance for all components.

The MLE θ̂ in (1.3) works well when the error distribution is normal. However, the normality based MLE is sensitive to
outliers or heavy-tailed error distributions. There is little research about how to estimate themixture regression parameters
robustly. Markatou (2000) and Shen et al. (2004) proposed using a weight factor for each data point to robustify the
estimation procedure for mixture regression models. Neykov et al. (2007) proposed robust fitting of mixtures using the
trimmed likelihood estimator (TLE). Bai et al. (2012) proposed a modified EM algorithm to robustly estimate the mixture
regression parameters by replacing the least squares criterion in M step with a robust criterion. Bashir and Carter (2012)
extended the idea of the S-estimator to mixture of linear regression. There are also some related robust methods for linear
clustering (Hennig, 2002, 2003; Mueller and Garlipp, 2005; García-Escudero et al., 2009, 2010).

In this article, we propose a new robust mixture regression model by extending the mixture of t-distributions proposed
by Peel andMcLachlan (2000) to the regression setting. Similar to the traditional M-estimate for linear regression (Maronna
et al., 2006), the proposed estimate is expected to be sensitive to high leverage outliers. To overcome this problem, we also
propose a modified version of the newmethod by fitting the newmodel to the data after adaptively trimming high leverage
points. Compared to the TLE, the proportion of trimming of our new method is data adaptive instead of a fixed value. In
addition, we propose to use the profile likelihood to adaptively choose the degrees of freedom for the t-distribution. The
proposed estimate has high efficiency, i.e., comparable performance to the traditional MLE when the error is normal, due to
the adaptive choice of degrees of freedom. Using a simulation study and real data application, we compare the newmethod
to some existing methods, and demonstrate the effectiveness of the proposed method.

The rest of this article is organized as follows. In Section 2, we introduce our new robustmixture linear regressionmodels
based on the t-distribution. In Section 3, we propose to further improve the robustness of the proposed method against
high leverage outliers by adaptively trimming high leverage points. In Section 4, we introduce how to adaptively choose
the degrees of freedom for the t-distribution. In Section 5, we compare the proposed method to the traditional MLE and
some other robust methods by using a simulation study and real data application. Section 6 contains a discussion of possible
future work.

2. Robust mixture regression using the t-distribution

In order to more robustly estimate the mixture regression parameters in (1.2), we assume that the error density fj(ϵ) is
a t-distribution with degrees of freedom νj and scale parameter σ :

f (ϵ; σ , ν) =
0

ν+1
2


σ−1

(πν)
1
20

ν
2

 
1 +

ϵ2

σ 2ν

 1
2 (ν+1)

. (2.1)

We first assume that νjs are known.Wewill discuss about how to adaptively choose νjs in Section 4. The unknownparameter
θ in (1.2) can be estimated by maximizing the log-likelihood

ℓ(θ) =

n
i=1

log


m
j=1

πjf (yi − xTi βj; σ , νj)


. (2.2)

Note, however, the above log-likelihood does not have an explicit maximizer. Here, we also propose to use an EM
algorithm to simplify the computation. Let

zij =


1, if the ith observation is from the jth component;
0, otherwise,
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where i = 1, . . . , n, j = 1, . . . ,m. Then the complete likelihood for (y, z) given X is

ℓc(θ; y, z) =

n
i=1

m
j=1

zij log{πjf (yi − xTi βj; σ , νj)},

where X = (x1, . . . , xn)T , y = (y1, . . . , yn), and z = (z11, . . . , znm). Based on the theory of the EM algorithm, in E step,
given the current estimate θ(k) at the kth step, we calculate E(ℓc(θ; y, z) | X, y, θ(k)) which simplifies to the calculation of
E(zij | X, y, θ(k)). Then in M step, we find the maximizer of

E(ℓc(θ; y, z) | X, y, θ(k)) =

n
i=1

m
j=1

E(zij | X, y, θ(k)) log{πjf (yi − xTi βj; σ , νj)}.

Note that the above maximizer does not have explicit solutions for βj and σ .
The computation can be further simplified based on the fact that the t-distribution can be considered a scale mixture of

normal distributions. Let u be the latent variable such that

ϵ|u ∼ N(0, σ 2/u), u ∼ gamma

1
2
ν,

1
2
ν


, (2.3)

where gamma(α, γ ) has density

f (u;α, γ ) =
1

0(α)
γ αuα−1e−γ u, u > 0.

Then, marginally ϵ has a t-distribution with degrees of freedom ν and scale parameter σ . Therefore, we can simplify the
computation of M step of the proposed EM algorithm by introducing another latent variable u.

Note that the complete likelihood for (y,u, z) given X is

ℓc(θ; y,u, z) =

n
i=1

m
j=1

zij log

πjφ(yi; xTi βj, σ

2/ui)f

ui;

1
2
νj,

1
2
νj


,

=

n
i=1

m
j=1

zij log(πj)+

n
i=1

m
j=1

zij log

f

ui;

1
2
νj,

1
2
νj


,

+

n
i=1

m
j=1

zij


−

1
2
log(2πσ 2)+

1
2
log(ui)−

ui

2σ 2
(yi − xTi βj)

2

, (2.4)

where u = (u1, . . . , un) is independent of z. Since the above second term does not involve unknown parameters, based on
the theory of the EM algorithm, in E step, given the current estimate θ(k) at the kth step, the calculation of E(ℓc(θ; y,u, z) |

X, y, θ(k)) simplifies to the calculation of E(zij | X, y, θ(k)) and E(ui | X, y, θ(k), zij = 1). Then inM step,we find themaximizer
of

E(ℓc(θ; y,u, z) | X, y, θ(k))

∝

n
i=1

m
j=1

E(zij | X, y, θ(k))


log(πj)−

1
2
log(2πσ 2)−

E(ui | X, y, θ(k), zij = 1)
2σ 2

(yi − xTi βj)
2


(2.5)

which has an explicit solution for θ.
Based on the above, we propose the following EM algorithm to maximize (2.2).

Algorithm 2.1. Given the initial parameter estimate θ(0), at the (k + 1)th iteration, we calculate the following two steps:

E step: Calculate

p(k+1)
ij = E(zij | X, y, θ(k)) =

π
(k)
j f (yi − xTi β

(k)
j ; σ (k), νj)

m
l=1
π
(k)
l f (yi − xTi β

(k)
l ; σ (k), νl)

(2.6)

and

u(k+1)
ij = E(ui | X, y, θ(k), zij = 1) =

ν + 1

ν +


(yi − xTi β

(k)
j )/σ (k)

2 , (2.7)

where f (ϵ; σ , ν) is defined in (2.1).
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M step: Update parameter estimates:

π
(k+1)
j =

n
i=1

p(k+1)
ij /n, (2.8)

β
(k+1)
j =


n

i=1

xixTj p
(k+1)
ij u(k+1)

ij

−1  n
i=1

xiyip
(k+1)
ij u(k+1)

ij


, (2.9)

and

σ (k+1)
=


n

i=1

m
j=1

p(k+1)
ij u(k+1)

ij (yi − xTi β
(k+1)
j )2

n


1/2

. (2.10)

Theorem 2.1. Each iteration of the E step and M step of Algorithm 2.1monotonically non-decreases the objective function (2.2),
i.e., ℓ(θ(k+1)) ≥ ℓ(θ(k)), for all k ≥ 0.

The proof of the above theorem is simple and omitted here. Based on (2.9) in M step, the regression parameters can be
considered a weighted least squares estimate with the weights depending on u(k+1)

ij . Based on (2.7) in E step, the weights
u(k+1)
ij decrease if the standardized residuals increase. Therefore, the weights u(k+1)

ij reduce the effects of the outliers and
provide a robust estimate for the mixture regression parameters. In addition, based on (2.10) in M step, the larger residuals
also have smaller effects on σ (k+1)

j due to the weights u(k+1)
ij .

Hennig (2004) showed that the mixture of t-distributions proposed by Peel and McLachlan (2000) has a low breakdown
point.We expect similar results from the proposedmixture regressionmodels based on the t-distribution. However, Hennig
(2004) mentioned that only very extreme outliers can lead to the breakdown of mixture of t-distributions. Our real data
application in Section 5 further confirms this finding. Therefore, we believe that the t-distribution can still be used as an
alternative tool to provide a robust estimation for the mixture model against modest outliers.

3. Adaptively trimmed version

Similar to the traditional M-estimate for linear regression (Maronna et al., 2006), the proposedmixture regressionmodel
based on the t-distribution is sensitive to high leverage outliers. To overcome this problem, we then propose a trimmed
version of the newmethod by fitting the newmodel to the data after adaptively trimming high leverage points. In addition,
unlike TLE (Neykov et al., 2007), the proportion of trimming of the new method is data adaptive instead of a fixed value.

Let X = (x1, . . . , xn)T and hii be the ith diagonal of H , where H = X(XTX)−1XT . Then, hii is called the leverage for the ith
predictor xi and xi is considered a high leverage point if hii is large.

Note however

hii = n−1
+ (n − 1)−1MDi, (3.1)

where

MDi = (xi − x̄)TS−1(xi − x̄)

is the Mahalanobis distance, x̄ is the sample mean of xis, and S is the sample covariance of xis (without the intercept 1). It
is well known that x̄ and S are not resistant to outliers and might create the masking effect (Rousseeuw and van Zomeren,
1990), i.e., some high leverage points might not be identified due to the influence of other high-leverage points. In order to
overcome this, a modified Mahalanobis distance is proposed

MDi = (xi − m(X))TC(X)−1(xi − m(X)),

where m(X) and C(X) are robust estimates of location and scatter for X (after removing the first column 1s).
We propose to use the minimum covariance determinant (MCD, Rousseeuw, 1984) estimators for m(X) and C(X) and

implement it by the fast MCD algorithm of Rousseeuw and Van Driessen (1999). Note that the resulting robust estimate
MDi is the same as the robust distance proposed by Rousseeuw and Leroy (1987). After getting the robust estimate MDi,
we propose to trim the data based on the cut point χ2

p−1,0.975, which is proposed by Pison et al. (2002) to improve the
finite-sample efficiency for the raw MCD estimator using a one-step weighted estimate. Therefore, to make the proposed
method also robust against high leverage outliers, we propose to implement the proposed mixture of regression based on
the t-distribution after trimming the observations with MDi > χ2

p−1,0.975.
Wemight also utilize some other robust estimates form(X) and C(X). There have beenmany robust estimators proposed

for multivariate location and scatter, such as the Stahel–Donoho estimator (Stahel, 1981; Donoho, 1982), the minimum
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volume ellipsoid (MVE) estimator (Rousseeuw, 1984), the S-estimator (Rousseeuw and Leroy, 1987; Davies, 1987), and the
depth based estimator (Donoho and Gasko, 1992; Liu et al., 1999; Zuo and Serfling, 2000; Zuo et al., 2004).

4. Adaptive choice of the degrees of freedom for the t-distribution

In previous sections, we assume that the degrees of freedom νjs for the t-distribution are known. In this section, we
discuss how to adaptively choose ν. We first consider the case where ν1 = ν2 = · · · = νm = ν. We will further discuss the
case where νjs are different later.

When ν is unknown, we typically estimate ν and the mixture regression parameter θ by maximizing the log-likelihood
(2.2) over both ν and θ. In order to maximize the log-likelihood (2.2), we define the profile likelihood for ν:

L(ν) = max
θ

n
i=1

log


m
j=1

πjf (yi − xTi βj; σ , ν)


. (4.1)

For each fixed ν, we can easily find L(ν) based on Algorithm 2.1. Then we propose to estimate ν by

ν̂ = argmax
ν

L(ν).

In practice, we can calculate L(ν) in a set of grid points of ν, say ν = 1, . . . , νmax.
Note that the above proposed profile method can be also applied to the case where νjs are different; however, the

computation will be intensive whenm is large, since we need to compute L(ν) for νmmax times.
Similar to Peel and McLachlan (2000), we can also incorporate the estimation of νjs in EM Algorithm 2.1. Based on the

complete likelihood (2.4), at the (k + 1)th iteration of M step given the current estimate θ(k), we can update νj by

ν
(k+1)
j = argmax

νj
E


n

i=1

zij log

f

ui;

1
2
νj,

1
2
νj


| X, y, θ(k)


. (4.2)

Note that

E

log(ui) | X, y, θ(k), zij = 1


= ψ


ν
(k)
j + 1

2


− log

ν(k)j +


(yi − xTi β

(k)
j )/σ (k)

2
2

 , v
(k+1)
ij ,

where ψ(t) = ∂ log(0(t))/∂t is the Digamma function. Therefore, (4.2) is equivalent to

ν
(k+1)
j = argmax

νj

n
i=1

p(k+1)
ij


− log0(0.5νj)+ 0.5νj log(0.5νj)+ 0.5νj


v
(k+1)
ij − u(k+1)

ij


− v

(k+1)
ij


. (4.3)

Note that (4.3) does not have an explicit formula. We might use some numerical algorithms to solve it or simply use grid
search for νj = 1 . . . , νmax.

5. Examples

5.1. Simulation studies

In this section, we use a simulation study to demonstrate the effectiveness of the proposed method and compare the
following five methods:

1. traditional MLE assuming the error has a normal density (MLE),
2. trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007) with the percentage of trimmed data α set to 0.1,

(The choice of α plays an important role for the TLE. If α is too large, the TLE will lose much efficiency. If α is too small
and the percentage of outliers is more than α, then the TLE will fail. In our simulation study, the proportion of outliers is
never greater than 0.1.)

3. the robust modified EM algorithm based on bisquare (MEM-bisquare) proposed by Bai et al. (2012),
4. the proposed robust mixture regression model based on the t-distribution (Mixregt),
5. the proposed trimmed version of Mixregt (Mixregt-trim).

To compare the different methods, we report the mean squared errors (MSE) and the bias of the parameter estimates for
each estimation method. However, under mixture models, there are well known label switching issues (Celeux et al., 2000;
Stephens, 2000; Yao and Lindsay, 2009; Yao, 2012) when performing comparisons using simulation studies. There are no
generally accepted labeling methods. In our simulation study, we choose the labels by minimizing the distance to the true
parameter values. However, more research comparing different labeling methods is needed.
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Example 1. Suppose the independently and identically distributed samples {(x1i, x2i, yi), i = 1, . . . , n} are sampled from
the model

Y =


0 + X1 + X2 + ϵ1, if Z = 1;
0 − X1 − X2 + ϵ2, if Z = 2,

where Z is a component indicator of Y with P(Z = 1) = 0.25, X1 ∼ N(0, 1), X2 ∼ N(0, 1), and ϵ1 and ϵ2 have the same
distribution as ϵ. We consider the following five cases for the error density of ϵ:

Case I: ϵ ∼ N(0, 1)—standard normal distribution,
Case II: ϵ ∼ t3—the t-distribution with degrees of freedom 3,
Case III: ϵ ∼ t1—the t-distribution with degree of freedom 1 (Cauchy distribution),
Case IV: ϵ ∼ 0.95N(0, 1)+ 0.05N(0, 52)—contaminated normal mixture,
Case V: ϵ ∼ N(0, 1)with 5% of high leverage outliers being X1 = 20, X2 = 20, and Y = 100.

Case I is used to test the efficiency of different estimation methods compared to the traditional MLE when the error is
exactly normally distributed and there are no outliers. Case II is a heavy-tailed distribution. The t-distributions with degrees
of freedom from 3 to 5 are often used to represent the heavy-tailed distributions. Case III is a Cauchy distribution which has
extreme heavy tails. The contaminated normal mixture model in Case IV is often used to mimic the situation with outliers.
The 5% data fromN(0, 52) are likely to be low leverage outliers. In Case V, 95% of the observations have the error distribution
N(0, 1), but 5% of the observations are identical high leverage outliers with X1 = 20, X2 = 20, and Y = 100.

In this example, we check the performance of the proposed profile likelihood method assuming all νjs are equal. Note
that when ν is large enough, the t-distribution is close to a normal distribution. Therefore, in practice, νmax does not need
to be large. In this example, we set νmax = 15. However, one might choose a larger νmax for real data application.

Tables 1 and 2 report the mean squared errors (MSE) and the absolute bias (Bias) of the parameter estimates for each
estimationmethod for sample size n = 200 and n = 400, respectively. The number of replicates is 200. As shown in Tables 1
and 2, in Case I through IV, Mixregt andMixregt-trim performed at a level that is better or equal to the other three methods.
In case V where there are high leverage outliers, Mixregt-trim also outperformed the other four methods. Specifically, we
have the following findings.

1. MLE worked best in Case I (ϵ ∼ N(0, 1)), but failed to provide reasonable estimates in Case II–V.
2. Mixregt and Mixregt-trim performed better than MEM-bisquare in Case I, II, and IV when n = 200, but performed

comparably to MEM-bisquare when n = 400. In addition, Mixregt and Mixregt-trim also performed better than MEM-
bisquare in Case III when n = 400.

3. Mixregt, Mixregt-trim, and MEM-bisquare performed better than TLE in Case I–IV.
4. In Case V, where there are high leverage outliers, Mixregt-trim worded best. In addition, TLE and MEM-bisquare also

worked better than Mixregt and MLE.

In order to check the performance of the proposed profile likelihood for the selection of degrees of freedom for
t-distribution, in Table 3,we report themean andmedian of estimated degrees of freedom forMixregt andMixregt-trim. The
degrees of freedomwere chosen based on the grid points from [1, vmax], where vmax = 15was used in our simulation study.
Therefore, for Case I-normal distribution, the ‘‘optimal’’ solution is vmax = 15. Based on the results of Case I, II, and III in
Table 3, the proposed profile likelihood adaptively estimated the degrees of freedom for t-distribution. In Case IV, although
the true error density is not a t-distribution, both Mixregt and Mixregt-trim were able to use a heavy-tailed t-distribution
to approximate the contaminated normal mixture to produce a robust estimate for mixture regression parameters. In Case
V, the estimated degrees of freedom for Mixregt-trim are close to vmax = 15. Therefore, Mixregt-trim successfully trimmed
the high leverage outliers and recovered the original normal error density.

Example 2. In this example, we consider a case where the number of components is larger than two and the components
are close. We generate the independent and identically distributed (i.i.d.) data {(xi, yi), i = 1, . . . , n} from the model

Y =

1 + X + ϵ1, if Z = 1;
2 + 2X + ϵ2, if Z = 2;
3 + 5X + ϵ3, if Z = 3;

where Z is a component indicator of Y with P(Z = 1) = P(Z = 2) = 0.3, P(Z = 3) = 0.4, and X ∼ N(0, 1). Note that in
this case all three components have the same sign of the slopes and the first two components are very close. We consider
the following four cases for component error densities:

Case I: ϵ1, ϵ2, and ϵ3 have the same distribution from N(0, 1),
Case II: ϵ1 ∼ t9, ϵ2 ∼ t6 and ϵ3 ∼ t3,
Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3,
Case IV: ϵ1, ϵ2, and ϵ3 have the same distribution from N(0, 1) with 5% of high leverage outliers being X = 20 and
Y = 200.
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Table 1
MSE (Bias) of point estimates for n = 200 in Example 1.

TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ ∼ N(0, 1)

β10 : 0 0.046 (0.001) 0.305 (0.033) 0.066 (0.008) 0.046 (0.003) 0.048 (0.008)
β20 : 0 0.010 (0.014) 0.069 (0.015) 0.010 (0.012) 0.010 (0.014) 0.010 (0.015)
β11 : 1 0.032 (0.013) 0.938 (0.618) 0.052 (0.006) 0.032 (0.011) 0.040 (0.001)
β21 : −1 0.009 (0.001) 0.018 (0.013) 0.010 (0.001) 0.009 (0.001) 0.011 (0.002)
β12 : 1 0.042 (0.007) 0.910 (0.648) 0.087 (0.030) 0.041 (0.006) 0.050 (0.012)
β22 : −1 0.009 (0.000) 0.015 (0.005) 0.010 (0.000) 0.009 (0.000) 0.011 (0.002)
π1 : 0.25 0.002 (0.004) 0.009 (0.049) 0.002 (0.007) 0.002 (0.004) 0.002 (0.006)

Case II: ϵ ∼ t3

β10 : 0 38.42 (0.205) 0.253 (0.021) 0.205 (0.033) 0.141 (0.014) 0.153 (0.020)
β20 : 0 16.73 (0.117) 0.029 (0.010) 0.148 (0.020) 0.015 (0.002) 0.106 (0.008)
β11 : 1 12.59 (0.148) 0.380 (0.331) 0.217 (0.095) 0.151 (0.064) 0.169 (0.081)
β21 : −1 5.235 (0.365) 0.022 (0.015) 0.032 (0.029) 0.014 (0.012) 0.052 (0.035)
β12 : 1 19.57 (0.576) 0.350 (0.282) 0.200 (0.048) 0.143 (0.035) 0.189 (0.071)
β22 : −1 5.236 (0.278) 0.023 (0.017) 0.149 (0.054) 0.015 (0.008) 0.020 (0.010)
π1 : 0.25 0.098 (0.076) 0.007 (0.041) 0.012 (0.042) 0.003 (0.008) 0.008 (0.017)

Case III: ϵ ∼ t1

β10 : 0 4.7e+4 (8.158) 3.242 (0.082) 0.985 (0.006) 0.305 (0.025) 0.429 (0.016)
β20 : 0 4.2e+6 (147.0) 4.871 (0.070) 0.083 (0.017) 0.061 (0.013) 0.072 (0.012)
β11 : 1 2.2e+4 (38.27) 3.850 (0.018) 0.764 (0.125) 0.691 (0.343) 1.025 (0.402)
β21 : −1 3.6e+6 (241.3) 1.770 (0.182) 0.085 (0.001) 0.053 (0.069) 0.059 (0.012)
β12 : 1 2.7e+4 (35.81) 2.301 (0.448) 0.669 (0.207) 0.634 (0.353) 0.837 (0.398)
β22 : −1 1.7e+5 (44.15) 1.429 (0.189) 0.193 (0.076) 0.056 (0.095) 0.154 (0.038)
π1 : 0.25 0.305 (0.272) 0.084 (0.106) 0.025 (0.103) 0.019 (0.068) 0.022 (0.080)

Case IV: ϵ ∼ 0.95N(0, 1)+ 0.05N(0, 52)

β10 : 0 5.372 (0.020) 0.183 (0.024) 0.056 (0.008) 0.057 (0.013) 0.065 (0.015)
β20 : 0 7.378 (0.235) 0.039 (0.000) 0.014 (0.010) 0.011 (0.010) 0.011 (0.008)
β11 : 1 3.979 (0.096) 0.470 (0.382) 0.126 (0.036) 0.057 (0.002) 0.078 (0.009)
β21 : −1 1.763 (0.131) 0.016 (0.007) 0.013 (0.016) 0.013 (0.013) 0.014 (0.010)
β12 : 1 4.217 (0.138) 0.568 (0.415) 0.117 (0.044) 0.063 (0.008) 0.081 (0.018)
β22 : −1 2.300 (0.244) 0.017 (0.003) 0.013 (0.012) 0.013 (0.001) 0.015 (0.007)
π1 : 0.25 0.088 (0.067) 0.006 (0.032) 0.006 (0.028) 0.003 (0.006) 0.003 (0.008)

Case V: ϵ ∼ N(0, 1)with 5% of high leverage outliers

β10 : 0 2.099 (0.059) 0.163 (0.054) 0.508 (0.092) 1.508 (0.240) 0.016 (0.015)
β20 : 0 0.014 (0.000) 0.022 (0.007) 0.010 (0.001) 0.034 (0.013) 0.010 (0.001)
β11 : 1 3.443 (1.534) 0.487 (0.129) 1.152 (0.532) 3.055 (1.561) 0.054 (0.008)
β21 : −1 0.076 (0.235) 0.063 (0.020) 0.011 (0.023) 0.089 (0.138) 0.010 (0.003)
β12 : 1 3.233 (1.459) 0.426 (0.139) 0.747 (0.364) 2.663 (1.425) 0.042 (0.004)
β22 : −1 0.070 (0.227) 0.086 (0.021) 0.012 (0.018) 0.082 (0.132) 0.011 (0.015)
π1 : 0.25 0.009 (0.092) 0.004 (0.010) 0.004 (0.015) 0.007 (0.080) 0.003 (0.005)

In this example, we compare the performance of the proposed method, when all νjs are assumed to be unequal, to the
other methods. Tables 4 and 5 report the mean squared errors (MSE) and the absolute bias (Bias) of the parameter estimates
for each estimation method for sample size n = 200 and n = 400, respectively. In Case I where the error is normal, all five
methods worked well and MLE, MEM-bisquare, Mixregt, and Mixregt-trim worked better than TLE. In Case II and III where
the errors have heavy tails, all four robust methods performed well but MLE failed. In Case IV where there are high leverage
outliers, TLE, MEM-bisquare, and Mixregt-trim still worked well, but MLE and Mixregt failed.

5.2. Real data application

We further apply the proposed robust procedure to tone perception data (Cohen, 1984). In the tone perception
experiment of Cohen (1984), a pure fundamental tonewith electronically generated overtones addedwas played to a trained
musician. The experiment recorded 150 trials from the samemusician. The overtoneswere determined by a stretching ratio,
which is the ratio between adjusted tone and the fundamental tone. The purpose of this experiment was to see how this
tuning ratio affects the perception of the tone and to determine whether either of two musical perception theories was
reasonable.

To better illustrate the robustness of the proposed estimation procedure, we added ten identical outliers (1.5, 5) to the
original data set, and fit the data with both MLE and Mixregt. Fig. 1 shows the scatter plot of the data with the estimated
regression lines generated by the traditionalMLE (dashed lines) and the proposedMixregt (solid line) for the data augmented
by the outliers (stars). As shown in Fig. 1, the MLE for one of the components fits the line through the outliers and the MLE
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Table 2
MSE (Bias) of point estimates for n = 400 in Example 1.

TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ ∼ N(0, 1)

β10 : 0 0.020 (0.003) 0.144 (0.037) 0.021 (0.003) 0.020 (0.003) 0.023 (0.008)
β20 : 0 0.004 (0.000) 0.037 (0.027) 0.004 (0.001) 0.004 (0.001) 0.004 (0.004)
β11 : 1 0.021 (0.006) 0.579 (0.455) 0.023 (0.009) 0.021 (0.005) 0.019 (0.003)
β21 : −1 0.004 (0.003) 0.012 (0.014) 0.004 (0.003) 0.004 (0.003) 0.005 (0.003)
β12 : 1 0.017 (0.002) 0.625 (0.471) 0.019 (0.000) 0.017 (0.002) 0.025 (0.001)
β22 : −1 0.004 (0.005) 0.011 (0.003) 0.004 (0.008) 0.004 (0.005) 0.005 (0.002)
π1 : 0.25 0.001 (0.004) 0.009 (0.028) 0.001 (0.006) 0.001 (0.004) 0.001 (0.000)

Case II: ϵ ∼ t3

β10 : 0 22.41 (0.078) 0.092 (0.030) 0.044 (0.008) 0.040 (0.007) 0.042 (0.006)
β20 : 0 12.13 (0.012) 0.011 (0.003) 0.008 (0.000) 0.006 (0.001) 0.006 (0.000)
β11 : 1 16.13 (0.482) 0.107 (0.162) 0.039 (0.024) 0.035 (0.005) 0.037 (0.003)
β21 : −1 21.65 (0.638) 0.007 (0.008) 0.007 (0.026) 0.006 (0.006) 0.007 (0.004)
β12 : 1 23.00 (0.245) 0.094 (0.181) 0.040 (0.022) 0.038 (0.007) 0.039 (0.005)
β22 : −1 11.33 (0.467) 0.007 (0.004) 0.008 (0.028) 0.006 (0.007) 0.007 (0.008)
π1 : 0.25 0.087 (0.059) 0.002 (0.021) 0.002 (0.021) 0.001 (0.001) 0.002 (0.001)

Case III: ϵ ∼ t1

β10 : 0 5.2e+6 (210) 2.515 (0.079) 0.205 (0.002) 0.017 (0.012) 0.124 (0.030)
β20 : 0 9.1e+5 (71.5) 1.919 (0.131) 0.063 (0.013) 0.010 (0.002) 0.025 (0.006)
β11 : 1 1.2e+7 (330) 0.951 (0.157) 0.417 (0.202) 0.255 (0.013) 0.313 (0.171)
β21 : −1 9.4e+5 (184) 0.634 (0.047) 0.118 (0.068) 0.009 (0.016) 0.037 (0.017)
β12 : 1 1.8e+6 (109) 1.318 (0.083) 0.418 (0.134) 0.198 (0.032) 0.233 (0.171)
β22 : −1 2.11e+5 (74) 0.667 (0.064) 0.085 (0.059) 0.008 (0.004) 0.025 (0.010)
π1 : 0.25 0.303 (0.253) 0.049 (0.054) 0.025 (0.107) 0.008 (0.014) 0.010 (0.033)

Case IV: ϵ ∼ 0.95N(0, 1)+ 0.05N(0, 52)

β10 : 0 3.509 (0.178) 0.117 (0.058) 0.023 (0.016) 0.025 (0.012) 0.030 (0.004)
β20 : 0 4.298 (0.194) 0.021 (0.013) 0.005 (0.000) 0.005 (0.001) 0.005 (0.006)
β11 : 1 2.057 (0.137) 0.340 (0.307) 0.025 (0.026) 0.027 (0.020) 0.033 (0.008)
β21 : −1 2.889 (0.341) 0.007 (0.011) 0.004 (0.002) 0.005 (0.011) 0.007 (0.012)
β12 : 1 2.436 (0.122) 0.303 (0.301) 0.019 (0.013) 0.021 (0.011) 0.032 (0.012)
β22 : −1 2.422 (0.134) 0.007 (0.011) 0.005 (0.004) 0.005 (0.007) 0.005 (0.002)
π1 : 0.25 0.059 (0.030) 0.004 (0.011) 0.001 (0.009) 0.001 (0.007) 0.001 (0.004)

Case V: ϵ ∼ N(0, 1)with 5% of high leverage outliers

β10 : 0 1.708 (0.129) 0.116 (0.029) 0.264 (0.040) 1.141 (0.203) 0.020 (0.007)
β20 : 0 0.008 (0.013) 0.035 (0.015) 0.005 (0.007) 0.005 (0.011) 0.005 (0.005)
β11 : 1 2.814 (1.473) 0.195 (0.016) 0.600 (0.333) 2.714 (1.498) 0.020 (0.008)
β21 : −1 0.074 (0.252) 0.078 (0.033) 0.007 (0.028) 0.024 (0.135) 0.005 (0.002)
β12 : 1 2.940 (1.516) 0.276 (0.005) 0.672 (0.341) 2.691 (1.490) 0.024 (0.015)
β22 : −1 0.073 (0.251) 0.052 (0.018) 0.006 (0.021) 0.021 (0.128) 0.004 (0.003)
π1 : 0.25 0.009 (0.095) 0.002 (0.003) 0.002 (0.016) 0.008 (0.087) 0.001 (0.001)

Table 3
The mean (median) of estimated degrees of freedom by Mixregt and Mixregt-trim based on the
grid points from [1, 15] for Example 1.

Case n Mixregt Mixregt-trim

I: ϵ ∼ N(0, 1) 200 14.5 (15) 14.4 (15)
400 14.7 (15) 14.8 (15)

II: ϵ ∼ t3 200 3.33 (3) 3.39 (3)
400 3.18 (3) 3.18 (3)

III: ϵ ∼ t1 200 1 (1) 1 (1)
400 1 (1) 1 (1)

IV: ϵ ∼ 0.95N(0, 1)+ 0.05N(0, 52) 200 3.52 (3) 3.45 (3)
400 3.91 (3) 3.92 (3)

V: ϵ ∼ N(0, 1)with 5% high leverage outliers 200 4.62 (4) 13.8 (15)
400 4.26 (4) 14.7 (15)

for the other component fits the line using the rest of data. In this example, the ten outliers had a significant impact on the
fitted regression lines by MLE. In addition, note that the proposed Mixregt well recovered the two regression lines and thus
was robust to the added outliers. Additionally, TLE, MEM-Bisquare, andMixregt-trim all provided similar results to Mixregt.
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Table 4
MSE (Bias) of point estimates for n = 200 in Example 2.

TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ N(0, 1)

β10 : 1 0.075 (0.025) 0.113 (0.068) 0.063 (0.036) 0.068 (0.043) 0.071 (0.044)
β20 : 2 0.189 (0.089) 0.211 (0.222) 0.145 (0.073) 0.149 (0.071) 0.200 (0.113)
β30 : 3 0.021 (0.006) 0.057 (0.006) 0.022 (0.004) 0.021 (0.005) 0.027 (0.012)
β11 : 1 0.086 (0.034) 0.205 (0.306) 0.062 (0.010) 0.060 (0.029) 0.073 (0.046)
β21 : 2 0.186 (0.078) 0.511 (0.013) 0.171 (0.065) 0.150 (0.036) 0.191 (0.066)
β31 : 5 0.020 (0.032) 0.047 (0.030) 0.018 (0.028) 0.020 (0.029) 0.023 (0.027)
π1 : 0.3 0.009 (0.015) 0.006 (0.037) 0.008 (0.011) 0.008 (0.011) 0.009 (0.017)
π2 : 0.3 0.008 (0.002) 0.004 (0.008) 0.007 (0.001) 0.006 (0.003) 0.008 (0.002)

Case II: ϵ1 ∼ t9, ϵ2 ∼ t6 , and ϵ3 ∼ t3

β10 : 1 25.31 (0.589) 0.155 (0.126) 0.175 (0.072) 0.123 (0.023) 0.143 (0.016)
β20 : 2 7.065 (0.832) 0.290 (0.273) 0.276 (0.060) 0.201 (0.020) 0.238 (0.007)
β30 : 3 13.88 (0.835) 0.066 (0.032) 0.034 (0.042) 0.033 (0.044) 0.034 (0.047)
β11 : 1 15.09 (0.164) 0.183 (0.256) 0.086 (0.032) 0.075 (0.035) 0.108 (0.035)
β21 : 2 5.927 (0.869) 0.456 (0.103) 0.299 (0.136) 0.311 (0.161) 0.310 (0.172)
β31 : 5 12.82 (1.469) 0.051 (0.021) 0.029 (0.042) 0.029 (0.046) 0.039 (0.065)
π1 : 0.3 0.056 (0.106) 0.009 (0.043) 0.010 (0.020) 0.012 (0.016) 0.014 (0.017)
π2 : 0.3 0.029 (0.042) 0.006 (0.015) 0.010 (0.002) 0.012 (0.006) 0.014 (0.007)

Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3

β10 : 1 5.111 (0.045) 0.127 (0.112) 0.094 (0.008) 0.091 (0.061) 0.095 (0.057)
β20 : 2 8.283 (0.928) 0.219 (0.241) 0.253 (0.069) 0.205 (0.037) 0.221 (0.068)
β30 : 3 9.160 (0.442) 0.044 (0.012) 0.083 (0.037) 0.081 (0.037) 0.081 (0.044)
β11 : 1 3.508 (0.165) 0.172 (0.257) 0.065 (0.035) 0.062 (0.058) 0.070 (0.070)
β21 : 2 5.687 (1.084) 0.202 (0.053) 0.347 (0.167) 0.330 (0.193) 0.405 (0.236)
β31 : 5 11.32 (1.492) 0.046 (0.028) 0.050 (0.062) 0.053 (0.072) 0.065 (0.085)
π1 : 0.3 0.064 (0.146) 0.007 (0.043) 0.011 (0.029) 0.012 (0.037) 0.014 (0.045)
π2 : 0.3 0.029 (0.020) 0.005 (0.022) 0.008 (0.003) 0.010 (0.001) 0.009 (0.004)

Case IV: ϵ1, ϵ2, ϵ3,∼ N(0, 1)with 5% of high leverage outliers

β10 : 1 0.240 (0.467) 0.117 (0.111) 0.088 (0.005) 0.128 (0.125) 0.143 (0.094)
β20 : 2 0.917 (0.936) 0.224 (0.216) 0.180 (0.027) 0.380 (0.351) 0.218 (0.132)
β30 : 3 16.39 (2.228) 0.039 (0.020) 0.022 (0.017) 3.231 (0.562) 0.025 (0.014)
β11 : 1 0.242 (0.495) 0.126 (0.188) 0.069 (0.032) 0.121 (0.180) 0.113 (0.097)
β21 : 2 8.576 (2.907) 0.261 (0.007) 0.245 (0.080) 3.005 (1.037) 0.217 (0.017)
β31 : 5 24.41 (4.913) 0.030 (0.012) 0.022 (0.001) 8.058 (1.643) 0.026 (0.009)
π1 : 0.3 0.060 (0.236) 0.006 (0.018) 0.010 (0.006) 0.023 (0.079) 0.017 (0.013)
π2 : 0.3 0.008 (0.078) 0.006 (0.004) 0.010 (0.001) 0.009 (0.039) 0.018 (0.008)

Fig. 1. The scatter plot of the tone perception data and the fitted mixture regression lines with ten added identical outliers (1.5, 5) (denoted by stars at
the upper left corner). The predictor is the actual tone ratio and the response is the perceived tone ratio by a trained musician. The solid lines represent
the fit by the proposed Mixregt and the dashed lines represent the fit by the traditional MLE.
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Table 5
MSE (Bias) of point estimates for n = 400 in Example 2.

TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ N(0, 1)

β10 : 1 0.042 (0.030) 0.077 (0.117) 0.045 (0.019) 0.039 (0.009) 0.049 (0.027)
β20 : 2 0.066 (0.051) 0.108 (0.214) 0.088 (0.087) 0.078 (0.075) 0.098 (0.077)
β30 : 3 0.129 (0.042) 0.032 (0.006) 0.014 (0.007) 0.013 (0.008) 0.012 (0.005)
β11 : 1 0.053 (0.002) 0.136 (0.267) 0.040 (0.022) 0.039 (0.023) 0.048 (0.021)
β21 : 2 0.123 (0.001) 0.443 (0.057) 0.261 (0.074) 0.244 (0.072) 0.102 (0.014)
β31 : 5 0.061 (0.034) 0.021 (0.043) 0.015 (0.020) 0.011 (0.016) 0.011 (0.013)
π1 : 0.3 0.006 (0.005) 0.004 (0.021) 0.005 (0.015) 0.005 (0.014) 0.005 (0.011)
π2 : 0.3 0.004 (0.007) 0.003 (0.007) 0.004 (0.010) 0.003 (0.011) 0.005 (0.013)

Case II: ϵ1 ∼ t9, ϵ2 ∼ t6 , and ϵ3 ∼ t3

β10 : 1 7.735 (0.157) 0.094 (0.116) 0.108 (0.110) 0.082 (0.045) 0.063 (0.028)
β20 : 2 3.897 (0.431) 0.163 (0.234) 0.150 (0.117) 0.093 (0.027) 0.111 (0.016)
β30 : 3 3.772 (0.270) 0.024 (0.022) 0.020 (0.014) 0.019 (0.009) 0.021 (0.008)
β11 : 1 6.219 (0.031) 0.124 (0.233) 0.060 (0.043) 0.050 (0.018) 0.056 (0.006)
β21 : 2 2.077 (0.251) 0.077 (0.091) 0.146 (0.015) 0.140 (0.037) 0.141 (0.049)
β31 : 5 3.055 (0.460) 0.020 (0.020) 0.015 (0.027) 0.016 (0.027) 0.017 (0.028)
π1 : 0.3 0.032 (0.022) 0.004 (0.026) 0.006 (0.016) 0.006 (0.001) 0.008 (0.003)
π2 : 0.3 0.025 (0.056) 0.004 (0.018) 0.006 (0.001) 0.007 (0.017) 0.008 (0.016)

Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3

β10 : 1 25.00 (0.632) 0.062 (0.071) 0.047 (0.016) 0.049 (0.015) 0.056 (0.007)
β20 : 2 3.977 (0.495) 0.125 (0.214) 0.064 (0.041) 0.048 (0.009) 0.070 (0.033)
β30 : 3 56.16 (0.722) 0.022 (0.014) 0.015 (0.020) 0.015 (0.022) 0.014 (0.022)
β11 : 1 5.088 (0.034) 0.123 (0.232) 0.030 (0.032) 0.029 (0.039) 0.044 (0.046)
β21 : 2 2.322 (0.315) 0.077 (0.107) 0.063 (0.032) 0.063 (0.047) 0.081 (0.047)
β31 : 5 57.05 (1.247) 0.017 (0.026) 0.014 (0.024) 0.015 (0.028) 0.020 (0.035)
π1 : 0.3 0.031 (0.062) 0.004 (0.030) 0.005 (0.014) 0.006 (0.010) 0.007 (0.013)
π2 : 0.3 0.019 (0.016) 0.003 (0.023) 0.005 (0.003) 0.006 (0.013) 0.007 (0.013)

Case IV: ϵ1, ϵ2, ϵ3,∼ N(0, 1)with 5% of high leverage outliers

β10 : 1 0.224 (0.459) 0.071 (0.097) 0.044 (0.040) 0.096 (0.114) 0.146 (0.096)
β20 : 2 0.928 (0.989) 0.137 (0.207) 0.058 (0.049) 0.342 (0.320) 0.129 (0.052)
β30 : 3 12.57 (2.632) 0.015 (0.012) 0.008 (0.009) 1.828 (0.461) 0.009 (0.004)
β11 : 1 0.226 (0.467) 0.101 (0.212) 0.025 (0.014) 0.097 (0.208) 0.108 (0.088)
β21 : 2 8.583 (2.928) 0.059 (0.068) 0.042 (0.026) 2.404 (0.807) 0.092 (0.015)
β31 : 5 24.83 (4.981) 0.015 (0.023) 0.008 (0.015) 6.451 (1.414) 0.011 (0.011)
π1 : 0.3 0.058 (0.247) 0.003 (0.025) 0.006 (0.001) 0.018 (0.070) 0.018 (0.002)
π2 : 0.3 0.006 (0.071) 0.003 (0.008) 0.006 (0.003) 0.005 (0.020) 0.018 (0.004)

Similar to Hennig (2004), in order to see how large the outliers can lead to the breakdown of at least one component
estimate, we further appliedMixregt by adding ten identical outliers (1.5, a) to the original data set using different a values.
We found that Mixregt still worked well when a = 4700 but failed when a = 4800. However, such extreme outliers can
usually easily be deleted.

6. Discussion

In this article, we proposed a new robust estimation method for mixture of regression based on the t-distribution.
In order to make the new method work against high leverage outliers, we further proposed a trimmed version of the
proposedmethod by fitting the newmodel to the data after adaptively trimming high leverage points. The simulation study
demonstrated the effectiveness of the proposed new method.

In the trimmed version of the new method, we use the same weights as Pison et al. (2002), i.e., delete the high leverage
points based on the cut point χ2

p−1,0.975. However, some high leverage points might have small residuals and thus can also
provide valuable information to regression parameters. More research is needed on how to incorporate information from
data with high leverage points and small residuals. One possible way is to borrow the ideas from GM-estimators (Krasker
and Welsch, 1982; Maronna and Yohai, 1981) and one-step GM-estimators (Coakley and Hettmansperger, 1993; Simpson
and Yohai, 1998).

It is also interesting to investigate the sample breakdown points for the proposed method and some of the other
robust mixture regression models. However, we should note that the analysis of breakdown point for traditional linear
regression cannot be directly applied to mixture regression. For example, the breakdown point of TLE for traditional linear
regression does not apply to the mixture regression. García-Escudero et al. (2010) also stated that the traditional definition
of breakdown point is not the right one to quantify the robustness of clustering regression procedures to outliers, since the
robustness of these procedures is not only data dependent but also cluster dependent.
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Hennig (2004) provided a new definition of breakdown points for mixture model based on the breakdown of at least one
of the mixture components. Based on this new definition, the mixture of t-distributions has a very small breakdown point
(Hennig, 2004). However, Hennig (2004) mentioned that only very extreme outliers could lead to the breakdown ofmixture
of t-distributions, especially when the degrees of freedomwere small. Therefore, we believe that the t-distribution can still
be used as a robust estimation method for mixture models with the exception of extreme outliers.

Note that model (1.2) assumes that component proportions πjs are constant and do not depend on x. This might be
unrealistic in some situations. The ideas that allow the proportions to depend on the covariates in a mixture model can
be found in the literature, e.g., the hierarchical mixtures of expert model (Jordan and Jacobs, 1994) in machine learning.
Young and Hunter (2010) used the kernel regression to model covariate-dependent proportions for mixture of linear
regression models. Huang and Yao (2012) proposed a semiparametric mixture regression model by allowing πj to depend
on x nonparametrically. It will be interesting to understand how to apply the proposed robust method based on the
t-distribution to the above models when the proportions also depend on x. This will be the topic of our future research.
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